PyTorch训练LSTM时loss.backward()报错的解决方案
训练用PyTorch编写的LSTM或RNN时,在loss.backward()上报错:
RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.
千万别改成loss.backward(retain_graph=True),会导致显卡内存随着训练一直增加直到OOM:
RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 10.73 GiB total capacity; 9.79 GiB already allocated; 13.62 MiB free; 162.76 MiB cached)
正确做法:
LSRM / RNN模块初始化时定义好hidden,每次forward都要加上self.hidden = self.init_hidden():
Class LSTMClassifier(nn.Module):
def __init__(self, embedding_dim, hidden_dim):
# 此次省略其它代码
self.rnn_cell = nn.LSTM(embedding_dim, hidden_dim)
self.hidden = self.init_hidden()
# 此次省略其它代码
def init_hidden(self):
# 开始时刻, 没有隐状态
# 关于维度设置的详情,请参考 Pytorch 文档
# 各个维度的含义是 (Seguence, minibatch_size, hidden_dim)
return (torch.zeros(1, 1, self.hidden_dim),
torch.zeros(1, 1, self.hidden_dim))
def forward(self, x):
# 此次省略其它代码
self.hidden = self.init_hidden() # 就是加上这句!!!!
out, self.hidden = self.rnn_cell(x, self.hidden)
# 此次省略其它代码
return out
或者其它模块每次调用这个模块时,其它模块的forward()都对这个LSTM模块init_hidden()一下。
如定义一个模型LSTM_Model():
Class LSTM_Model(nn.Module):
def __init__(self, embedding_dim, hidden_dim):
# 此次省略其它代码
self.rnn = LSTMClassifier(embedding_dim, hidden_dim)
# 此次省略其它代码
def forward(self, x):
# 此次省略其它代码
self.rnn.hidden = self.rnn.init_hidden() # 就是加上这句!!!!
out = self.rnn(x)
# 此次省略其它代码
return out
这是因为:
根据 官方tutorial,在 loss 反向传播的时候,pytorch 试图把 hidden state 也反向传播,但是在新的一轮 batch 的时候 hidden state 已经被内存释放了,所以需要每个 batch 重新 init (clean out hidden state), 或者 detach,从而切断反向传播。
补充:pytorch:在执行loss.backward()时out of memory报错
在自己编写SurfNet网络的过程中,出现了这个问题,查阅资料后,将得到的解决方法汇总如下
可试用的方法:
1、reduce batch size, all the way down to 1
2、remove everything to CPU leaving only the network on the GPU
3、remove validation code, and only executing the training code
4、reduce the size of the network (I reduced it significantly: details below)
5、I tried scaling the magnitude of the loss that is backpropagating as well to a much smaller value
在训练时,在每一个step后面加上:
torch.cuda.empty_cache()
在每一个验证时的step之后加上代码:
with torch.no_grad()
不要在循环训练中累积历史记录
total_loss = 0
for i in range(10000):
optimizer.zero_grad()
output = model(input)
loss = criterion(output)
loss.backward()
optimizer.step()
total_loss += loss
total_loss在循环中进行了累计,因为loss是一个具有autograd历史的可微变量。你可以通过编写total_loss += float(loss)来解决这个问题。
本人遇到这个问题的原因是,自己构建的模型输入到全连接层中的特征图拉伸为1维向量时太大导致的,加入pool层或者其他方法将最后的卷积层输出的特征图尺寸减小即可。
2. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系管理员处理!
6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!
8. <充值积分><开通会员>请联系客服QQ3278882110购买。
脾气SEO » PyTorch训练LSTM时loss.backward()报错的解决方案